When does the complement of the zero-divisor graph of a commutative ring

نویسنده

  • Ayman Badawi
چکیده

In this article, we determine up to isomorphism of rings, rings R such that R has the following properties: (i) R is a commutative ring with identity which admits at least two nonzero zero-divisors, (ii) the complement of the zero-divisor graph of R is connected and it admits a cut vertex. Indeed, it is proved that there are exactly two such rings up to isomorphism of rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of extended ideal based zero divisor graph of a commutative ring

This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

When does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?

 The rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$  is an undirected simple graph whose vertex set is $mathbb{A}(R...

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

On the Zero-divisor Cayley Graph of a Finite Commutative Ring

Let R be a fnite commutative ring and N(R) be the set of non unit elements of R. The non unit graph of R, denoted by Gamma(R), is the graph obtained by setting all the elements of N(R) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin N(R). In this paper, the basic properties of Gamma(R) are investigated and some characterization results regarding co...

متن کامل

INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012